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The development of digital technologies in the last twenty years has 
led to an unprecedented formal freedom in design and in the 
representation in virtual space. Combining non-standard geometry 
with CAD tools enables a new way of expression and realization of 
architectural ideas and conceptions. The transformation of a virtual 
double-curved surface into a buildable physical structure and object is 
always accompanied by huge costs and big problems like geometric 
and statical ones.  
This paper shows geometric methods how to control the construction 
of curved surfaces out of planar building elements. The approach is 
based on the discretization of the surfaces by plane elements derived 
from tangent planes. In order to satisfy also aesthetical requirements 
we engage plane geometrical patterns and ornaments and transfer 
them into spatial shape.  
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1. INTRODUCTION 

Unconventional geometric shapes and free-form surfaces - also 
known as non-standard geometry - have always been something that 
architects have wanted to design and build. In the history of 
architecture many of these forms could not be conceived as the design 
process was restricted by representation media and scale. The 
development of digital technologies in the last twenty years has led to 
an unprecedented formal freedom in design and in the representation 
in virtual space. New CAD software supports the generation and 
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modification of various geometries like solid objects with extrusions, 
Boolean operations, transformations etc. Furthermore CAD made it 
possible to work with complex NURBS surfaces using splitting, lofting 
and sweeping techniques etc. This has opened up another large 
domain. Forms that are generated this way can be very complex, single 
or double curved or consist of polygonal faces.  

Combining non-standard geometry with CAD tools enables a new 
way of expression and realization of architectural ideas and 
conceptions. Non-standard geometry has become a fixture in the work 
of many of the world’s foremost star-architects. Given the high degree 
of attention these geometric extravaganzas garner it seems 
astonishing, almost paradoxical, that the field of architecture as a 
whole is not investigating such geometries more thoroughly. In this age 
of digital-virtual architecture where complex non-standard 
architectural forms are possible there really is only a small number of 
architects that have acquired the know-how to make use of this 
enormous potential which makes non-standard architecture more 
buildable.   

But within the architectural design, engineering, fabrication and 
construction communities there is a growing interest in the potential 
of digital technologies and parametric design for a change of 
professional practice. 

 
2. DISCRETISATION OF FREE-FORM SURFACES 

The discretization of free-form surfaces has been a topic of great 
interest in the last few years. Discretisation is the first step in the 
creation of buildable free forms in architecture. Free-form surfaces 
may be discretized in a number of ways and in accordance with a 
number of principles.  

One method of surface discretization results in curved segments 
(Figure 01), whereas with another planar panels are obtained. In terms 
of geometry, there are two fundamental differences between these 
two methods of discretization.  

 
 

 
 
 
 
 
 
 
 
 
 

Figure 01 Discretization with curved segments, Kunsthaus Graz 
 
 
 



First: with the first method of discretization, the set form is not 
approximated; instead, the complete form is segmented into smaller 
curved segments. When a surface is discretized into planar elements, 
the initial surface form is approximated in order to obtain planar 
elements, and depending on the size of individual elements, a greater 
or lesser distortion in the geometry of the set form occurs. 

Second: when a surface is discretized into planar elements, the 
obtained segments of the surface share straight boundary edges, while 
with curved segments the boundary edges are curved. 

Nevertheless, if a surface is to be discretized in view of its actual 
construction, obviously from the aspect of technology discretization 
into planar elements is both more feasible and cost-effective, in 
comparison with discretization into curved elements. From an 
aesthetic point of view, discretization into curved elements offers 
many more forms to choose from in shaping individual segments to 
choose from, while planar discretization offers a limited number of 
segment forms. 

In our approach we will concentrate on discrete forms and 
surfaces, approximating complex curved shapes with flat panels which 
keeps costs down independent of the choice of buildings material. 

 
3. PLANARIZATION 

3.1 Theory 

A free-form surface can be segmented into plane elements using 
different techniques as triangulation (Figure 02, left), quad meshing 
(Figure 02, right), or more or less freely placed tangent planes. There 
are both advantages and disadvantages to each of these methods of 
discretization, which will be discussed briefly. 

Triangulation is the best-known method of curved surface 
discretization (Figure 03). This method is used for partitioning a 
selected surface into triangular planar segments. The drawback of this 
method is a very large number of edges with a high degree of 
geometric complexity, which in turn requires a big number of load-
carrying members, great quantities of structural materials, and 
increases construction costs. When it comes to aesthetics, only the 
size and aspect ratio of triangular panels can be influenced. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 02 Regular triangulation (left) and quad meshing (right) 



 
The second method is quad meshing, where a surface is divided 

into quadrangular polygons [Glymph et. al 2002, Pottmann et. al. 
2008]. From the aspect of use of material, quad meshing is more 
optimal than tessellation into triangular elements. However, it cannot 
be employed exactly with arbitrary surfaces, but only with surfaces 
generated in a special way (e.g. extrusion, translation or rotation). 

 
 
 
 
 
 
 
 
 
 
 

Figure 03  Triangulation, Murinsel Graz 
 
The third type of plane discretisation of free-form surfaces is as 

follows. An arbitrary set of points is distributed on the surface and 
their tangent planes are constructed. The solution is based on the 
intersection of the tangent planes of the surface. The fact that there is 
an infinite number of possibilities when selecting points on a surface 
through which tangent planes can be placed raises the issue of the way 
and conditions which make it possible to select specific tangent planes 
whose intersection would produce the desired shape in accordance 
with the previously selected tessellation, a 3D ornament. Another issue 
is whether there is an infinite range of possibilities to generate a 
preferred 3D ornament and on what conditions surface tessellation 
would be ornamental in character, i.e. it would generate not only the 
functional, but also the aesthetic component of a free-form surface. 
The figures 04 – 07 show the different steps from the choice of 
ornament in the [uv]-parameter plane (figure 04) to the curved 
ornamental patterns (figure 05) over to their associated tangent planes 
before their intersections (figure 06) and finally after their 
intersections. 

 
 

Figure 04 2D ornament 



 
 

Figure 05 3D ornament 
 
 

 
 

Figure 06 3D plane ornaments 
 

 
 

Figure 07 3D discretization 
 

3.2 Implementation   

In the process of discretizing a curved surface with planar 
segments, one constantly comes across intersecting planes. The edges 
created by intersecting planes define the boundary lines between 
panels and it is necessary to know how these edges behave in order to 
select those tangent planes which will result in the preferred 
intersection orientation. 



The paper [Troche, 2008] shows the shape of the polygon greatly 
depends on the local curvature of the surface. The elliptical, 
parabolical and hyperbolical points of a surface will result in different 
types of concave or convex polygons. Therefore, it is necessary to 
analyze any given surface based on its elliptical and hyperbolical 
surface areas, dividing it into segments having by the same kind of 
surface points (Figure08). Surfaces which contain only parabolic points 
are not of our interest. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 08 Analyse of surface curvature along isocurves, parabolic, 
hyperbolic and elliptical points 

 
Our approach to the discretization of a (double-) curved surface S 

is as follows. We take a number of surface points Pi (i = 1, ..., n) which 
(at this stage) are arbitrarily distributed on S. To every point P on S we 
determine its tangent plane τP and intersect it with the tangent planes 
of adjacent points. We keep that polygonal part of the intersected 
plane τP which encloses P. This part is convex if P is an elliptical 
surface point and concave if P is hyperbolic. An important question at 
this stage is which points and tangent planes are adjacent to P in order 
to carry out correct intersections. One known approach is to use a 
Delaunay triangulation to figure out the nearest and neighbouring 
points. This can be done by a triangulation of the parameter value set 
(ui, vi) of the points Pi in the [u,v] – plane or as a spatial Delaunay 
triangulation of the points Pi. This triangulation is used to determine 
the first circle of adjacent points, which takes into account only the 
physical layout of points. This works only in special cases and causes in 
general often problems (see e.g. Troche, 2008). This is due to the fact 
that this approach neither considers an adapted surface measurement 
in form of geodesic lines nor takes the curvature of the involved 
surface in account. 

In our approach that triangulation leads to the next stage of 
calculations, with the selection of second-order adjacency points in 
relation to the selected local points. These points will be used in the 
second stage of triangulation. 
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Figure 09 Delaunay triangulation of some points on a curved surface 

 
 
We developed the following idea to construct an appropriate 

triangulation of our point set Pi on an arbitrary double curved surface 
and therefore to get a correct intersection algorithm for the tangent 
planes. For every point P on S we perform a transformation of S and 
our point set Pi so that for the mean curvatures and  in P the 
following holds: 

  |
 
After that we project the neighbouring points of the point set Pi 

into the tangent plane of the point P. In the tangent plane we now 
perform the Delaunay triangulation. This yields a correct correlation 
between the surrounding points and so we can intersect the involved 
tangent planes to generate the polygonal panel associated with P.  

 
4. EXAMPLES 

The following figures (Figure 10, Figure 12) show some examples 
where the point set on the surface was varied by moving them along uv 
value( Figure11). So we got various patterns although we didn’t change 
the input surface nor the number of points. We only changed the 
position of several points on the surface and therefore their tangent 
planes. This led to different intersections and so to different panels.  

 

 
 

Figure 10 Different panels form 
 



 
 

Figure 11 Different uv-values and their influence on the shape 
 

Figure 12 Different panels form 
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